
ACORN

SYSTEM 5 HANDBOOK

400,056/1/1st March 1983

© Copyright Acorn Computers Limited 1983

Neither the whole or any part of the information
contained in, or the product described in, this manual
may be adapted or reproduced in any material form
except with the prior written approval of Acorn
Computers Limited (Acorn Computers).

The product described in this manual and products for
use with it, are subject to continuous development
and improvement. All information of a technical nature
and particulars of the product and its use (including
the information and particulars in this maual) are
given by Acorn Computers in good faith. However, it
is acknowledged that there may be errors or
omissions in this manual. A list of details of any
amendments or revisions to this manual can be
obtained upon request from Acorn Computers
Technical Enquiries. Acorn Computers welcome
comments and suggestions relating to the product
and this manual.

All correspondence should be addressed to:

Technical Enquiries
Acorn Computers Limited
Fulbourn Road
Cherry Hinton
Cambridge
CB1 4JN

All maintenance and service on the product must be
carried out by Acorn Computers authorised dealers.
Acorn Computers can accept no liability whatsoever
for any loss or damage caused by service or main-
tenance by unauthorised personnel. This manual is
intended only to assist the reader in the use of the
product, and therefore Acorn Computers shall not be
liabel for any loss or damage whatsoever arising from
the use of any information or particulars in, or any
error or omission in, this manual, or any incorrect use
of the product.

WARNING: THE COMPUTER MUST BE EARTHED

IMPORTANT: The wires in the mains lead for the
computer are coloured in accordance with the
following code:
GREEN AND YELLOW EARTH
BLUE NEUTRAL

BROWN LIVE

As the colours of the wires may not correspond with
the coloured markings identifying the terminals in your
plug, proceed as follows:

The wire which is coloured green and yellow must be
connected to the terminal in the plug which is marked
by the letter E, or by the safety earth symbol ¥ or
coloured green, or green and yellow.

The wire which is coloured blue must be connected to
the terminal which is marked with the letter N, or
coloured black.

The wire which is coloured brown must be connected
to the terminal which is marked with the letter L, or
coloured red.

HOW TO USE YOUR SYSTEM 5 HANDBOOK

INTRODUCTION

This handbook describes the Acorn System 5
computer and is divided into two parts: Software and
Hardware. These parts are sub-divided into sections
on the Disc Operating System, and hardware details
of the individual boards.

NEW USERS

The handbook is technically complete but may in-
itially be baffling to new users. New users wishing to

get their System 5 up and running should go straight
to Disc Operating System, Part 2, Section 1. This
section shows how to switch on the machine and use
the Disc Operating System facilities,

NOTE

There are references in the Disc Operating System
section to System 5 Basic. Please note that Basic is
not supplied as standard with System 5 machines
configured as Econet File Servers.

SYSTEM 5 HANDBOOK

CONTENTS

PART 1 SOFTWARE

Section 1 Disc Operating System

PART 2 HARDWARE

Section 1 Rack, PSU and Backplane

Section 2 6502A CPU Board

Section 3 32K DRAM Board

Section 4 80 x 25 VDU Board

Section 5 Floppy Disc Controller Board

Section 6 Acorn Keyboard

Section 7 Econet Board

©1982 Acorn Computers Limited, 12 Fulbourn Road, Cherry Hinton, Cambridge.
Written and Produced for Acorn Computers Limited by Arch Technical Publications Limited,

St. Lukes House, 5, Walsworth Road, Hitchin, Herts.

DISC OPERATING SYSTEM

DESCRIPTION

CONTENTS

Paragraph Page

1. INTRODUCTION 1

1.1 Disc Handling and Safe Keeping 1

1.2 What is Supplied in the System 5 1

1.3 The Disc Operating System 2

2. GETTING STARTED 2

2.1 Switching On 2

2.2 The Keyboard 2

2.2.1 Shift Key 2

2.2.2 Shift Lock Key 2

2.2.3 Caps Lock (^v) Key 3

2.3 Keyboard Entries 3

2.3.1 Character Deletion (DELETE Key) 3

2.3.2 Character Correction 3

2.3.3 Line Deletion (CRTL—X) 3

2.3.4 Entering a Correct Line (RETURN Key) 3

2.4 Loading a Disc 3

2.5 Reading a Catalogue 3

2.6 Drive and Surface Numbering 4

2.6.1 Using Drives 4

2.7 Formatting a New Disc 4

2.8 Loading, Saving and Deleting Files 5

2.8.1 Introduction 5

2.8.2 Loading and File 6

2.8.3 Saving Files 6

2.8.4 Deleting Files 6

2.9 Using BASIC 6

2.9.1 Introduction 6

2.9.2 Loading and Running BASIC 6

2.9.3 Saving a BASIC Program 6

2.9.4 Loading a BASIC Program 6

2.9.5 Returning to DOS and Back 6

2.9.6 BASIC Commands Associated with DOS 7

2.9.7 Control Codes and BASIC 8

2.10 Disc Security 8

2.10.1 Write Protection Notch 9

2.10.2 Software Lock 9

2.10.3 Back-Up Discs 9

©1982 Acorn Computers Limited, 12 Fulbourn Road, Cherry Hinton, Cambridge.
Written and Produced for Acorn Computers Limited by Arch Technical Publications Limited,

St. Lukes House, 5, Walsworth Road, Hitchin, Herts.

(i)

CONTENTS (Cont'd)

Paragraph Page

2.10.4 Transaction File Organization 9

2.10.5 Ancestral File System 9

3. DOS FEATURES 9

3.1 Tracks, Sectors and Bytes 9

3.2 Formats 9

3.2.1 Disc Format 9

3.2.2 Catalogue Format 10

3.3 The Command Line Interpreter 10

3.4 Keyboard Control Functions 11

3.4.1 Start Printer, STX [CTRL-B, 02 (Hex)] 11

3.4.2 End Printer, ETX [CTRL-C, 03 (Hex)] 11

3.4.3 Start Screen, ACK [CTRL-F, 06 (Hex)] 11

3.4.4 Backspace, BS [CTRL-H, 08 (Hex)] 11

3.4.5 Horizontal Tab, HT [CTRL-I, 09 (Hex)] 11

3.4.6 Line Feed, LF [CTRL-J, 0A (Hex)] 11

3.4.7 Vertical Tab, VT [CTRL-K, OB (Hex)] 11

3.4.8 Form Feed, FF [CTRL-L, 00 (Hex)] 11

3.4.9 Return, CR [CTRL-M, OD (Hex)] 11

3.4.10 End Screen, NAK [CTRL-U, 15 (Hex)] 11

3.4.11 Home Cursor, RS [CTRL-", 1E (Hex)] 11

3.4.12 Copy, DC1 [CTRL-Q, 11 (Hex)] 11

3.5 Abbreviated Entries 11

3.6 Printer, Screen and Keyboard Streams 11

3.6.1 SPOOL Command 11

3.6.2 EXEC Command 11

3.7 Auto-Start (OPTION and BOOT) 11

3.7.1 OPTION Command 11

3.7.2 BOOT File 12

3.8 EXEC Command 13

3.9 Qualifiers 13

3.10 Spooling 13

3.11 DOS Pointer 13

3.12 Disc Titles 13

3.13 Information on Files 14

3.13.1 INFO Command 14

3.13.2 MON and NOMON Commands 14

3.14 Machine Code Program Execution 14

4. DOS COMMAND AND ERROR MESSAGES 14

4.1 DOS Commands 14

4.2 Error Messages 17

4.3 File Specifications 17

(ii)

CONTENTS (Cont'd)

Paragraph Page

4.3.1 File Name 17

4.3.2 Qualifier 17

4.3.3 Load Address 18

4.3.4 Execution Address 18

4.3.5 File Length 18

4.3.6 Physical Location (Position on Disc) 18

5. UTI LTI ES 18

5.1 INFALL 19

5.2 COPY 19

5.3 COMPACT 19

5.4 COPYF 19

5.5 DUTY 19

5.6 FORM40, FORM80 19

5.6.1 Soft Sectoring 19

6. SEQUENTIAL FILE HANDLING 20

6.1 Pointer Operation 20

7. ASSEMBLY CODE ACCESS TO DOS 21

7.1 Introduction 21

7.2 OS Subroutines 22

7.2.1 OSFIND 22

7.2.2 OSSH UT 22

7.2.3 OSCLI 22

7.2.4 OSWRCH 22

7.2.5 OSCRLF 22

7.2.6 OSASC I 22

7.2.7 OSECHO 22

7.2.8 OSRDCH 22

7.2.9 OSLOAD 22

7.2.10 OSSAVE 23

7.2.11 OSSTAR 23

7.2.12 OSBGET 23

7.2.13 OSBPUT 23

7.2.14 OSRDAR 23

7.3 Random File Operation 23

7.3.1 Introduction 23

7.3.2 OSRDAR and OSSTAR 24

7.3.3 OSBPUT 24

7.3.4 OSBGET 24

7.3.5 OSFIND 24

7.4 File Buffers and Control Blocks 24

(iii)

TABLES

Table No. Page

1. Operating System Control Codes 8

2. Summary of Routines and Calls 21

FIGURES

Figure No. Page

1. The Mini-Floppy Disc 1

2. Driver Numbering 4

3. Command Line Interpreter 10

4. Full File Specification 17

5. Sector Format 20

(iv)

1. INTRODUCTION

Your System 5 is supplied with a Disc Operating
System (DOS) built in to its main memory (ROM). The
DOS provides you with:

— Control of your screen and printer.

— Screen editing facilities.

— The means to save and load programs, data and
text to and from disc.

- File management facilities.

All of the above facilities are available to you directly
from the keyboard, or you can "embed" them within
your programs.

1.1 DISC HANDLING AND SAFE KEEPING

Programs data and text that you have stored on disc
may represent hours, weeks or months of effort. By
careful and methodical handling and the use of simple
security procedures your programs, data and text
stored on disc will not be lost. The following security
procedures should be observed:

- DO NOT REMOVE the circular magnetic disc
from it's square black protective jacket.

- DO NOT TOUCH the exposed magnetic sur-
faces.

- AVOID DUST; keep the discs in their protective
jackets and store in a storage box when not
within the drive.

- DO NOT BEND, drop them, or rest heavy ob-
jects on them.

- KEEP THEM AWAY from strong magnetic fields
such as those generated by televisions,
monitors, tape recorders, transformers, tele-
phones and calculators.

AVOID excessive heat, moisture and direct
sunlight.

- USE ONLY FELT TIPPED PENS to write on the
labels and don't press too hard.

- INSERT DISC CAREFULLY; if a disc rotates
noisily, open drive door and adjust the disc
position.

You will want to protect some discs against accidental
overwriting. Each disc has a Write Protection Notch,
see Figure 1. When the Write Protection Notch is
covered with a self adhesive tab (supplied with each
box of discs) you cannot overwrite any programs, data
or text stored on that disc.

You may have individual programs, data or text stored
on disc that you want to write protect, while

writing to other areas on the same disc. Your DOS can
do this for you, but we will describe how this is done
later.

Finally, it is recommended that you keep copies of
discs containing important programs, data or text.

Figure 1. The Mini-Floppy Disc

1.2 WHAT IS SUPPLIED IN THE SYSTEM 5

Your System 5 will have been supplied according to
your requirements, but will include a minimum of the
following items:

HARDWARE
- Rack, PSU and Backplane
- 6502A Processor Board
- 32K Dynamic RAM Board
- 80 x 25 VDU Interface Board or Teletext VDU

Interface Board
- Floppy Disc Controller Board
- One Floppy Disc Drive

SOFTWARE
- Resident DOS
- A DOS utilities disc (see Section 5)

A list of available hardware and software options is
given in pare 1 of System 5 System Description.

Note that a different version of DOS is required for
different VDUs and different manufacturer's disc
drives.

1

1.3 THE DISC OPERATING SYSTEM

Although the DOS is primarily concerned with disc
access, handling and management, it also contains
the System 5 Operating System (OS). This controls
your screen and printer and provides you with screen
editing facilities. Handling of the DOS from the
keyboard is described in Sections 2, 3 and 4.
Handling of the DOS from programs is described in
Section 7.

The DOS recognises your screen and printer control,
and screen editing instructions by control key entries
from your keyboard (CRTL-A, CRTL-B, etc.).

The DOS recognises your disc access, handling and
management instructions by DOS command entries
from your keyboard or from within programs.

The DOS also recognises machine code program
names. When the file name is entered from the key-
board the DOS loads the named machine code pro-
gram. The DOS has an auto-start facility so that
programs will be loaded and immediately run. The
DOS will also execute a series of commands via an
Exec file using the Exec command.

2. GETTING STARTED

Several terms will be unfamiliar to you — but don't
worry. At first, for the sake of simplicity, we will gloss
over some terms that we use but they will be
explained later.

Programs, data or character strings (text) are handled
by the DOS as Files. When you store a File on disc
you must give the program a File Name which, when
you subsequently call the program, data or text, the
DOS will recognise.

The DOS will also recognise the following commands:

CAT Catalogue disc

DELETE Delete file
DIR Direct Catalogue to memory
DRIVE Select drive
EXEC Display or print as text and execute
GO Load and run machine code program
INFO Display or print file specification
LOAD Load file to memory
LOCK Write Protect a file
MON Start display or print of file specification

messages
NOMON Stop display or print of file specification

messages
OPTION Enable/disable auto-start facilities
RUN Run program, file
SAVE Save file to disc from memory

SET Set file qualifier
SHUT Shuts all open files
SPOOL Opens file for copy
TITLE Give title to disc

UNLOCK Remove a file Write Protection
USE Qualify which group of files that may be

accessed

File names can be used directly as Load and Run
commands.

You should refer to Section 4 to determine the precise
keystrokes for each DOS command, and always follow
a command with a RETURN.

2.1 SWITCHING ON

Switch your System on at the wall socket and at the
red rocker switch at the lower left hand end of the
computer front panel. If you have an Acorn keyboard,
the right hand lamp at the front edge of the keyboard
will be lit indicating that System power is On.

To enter DOS, press the DELETE key, followed by the
BREAK key. If you have a non-Acorn keyboard, press
and hold the DELETE key and press the BREAK key.
You should now be given the screen message:

Acorn Dos
*_

The "Acorn Dos" indicates that the DOS is active. The
* indicates that the System is waiting for a keyboard
entry, and the flashing cursor indicates the print
position of the next character to be input.

2.2 THE KEYBOARD

Your keyboard is similar to a typewriter keyboard,
though some keys have special functions.

2.2.1 Shift Key

Each character key will enter either an upper case or
lower case character. Pressing the Shift key while
pressing a character key enters the upper case char-
acter.

2.2.2 Shift Lock Key

Pressing the Shift Lock key locks the keyboard into
upper case entry. Pressing and releasing the Shift key
releases the keyboard to lower case entry. If you have
an Acorn keyboard, the centre lamp on the right hand
side of the keyboard will light when in shift lock.

2

2.2.3 Caps Lock (^v) Key

BASIC programs and DOS commands are recognised
only when entered as upper case letters and (lower
case) numbers. This involves frequent use of the Shift
and Shift Lock keys. The Caps Lock mode on the
Acorn keyboard allows you to enter DOS commands
and BASIC programs with minimum use of the Shift or
Shift Lock keys.

If you have an Acorn keyboard, it has a push-on
push-off key marked ^v. This key sets the keyboard
into the Teletype (CAPS LOCK) mode. The CAPS
LOCK mode allows the user to enter capital letters
and numbers without having to use the shift key.

Press the ^v, key. The left hand lamp at the front
edge of the keyboard should now be lit, confirming
that the keyboard is in the CAPS LOCK mode. If the
lamp is out press the ^v- key again.

To return to normal operation from CAPS LOCK,
press the ^v button.

2.3 KEYBOARD ENTRIES

DOS commands (and BASIC programs) are entered
using upper case letters and numbers. Until the
RETURN key is pressed corrections can easily be
made.

2.3.1 Character Deletion (DELETE Key)

Incorrect characters can be removed by pressing the
DELETE key, in which case the character to the left of
the cursor is erased and the cursor moved back one
space. The cursor may be positioned by pressing and
holding the CRTL key while the A key (cursor left) or
S key (cursor right) is pressed.

2.3.2 Character Correction

Characters can be corrected by positioning the cursor
(see 2.3.1 above) and pressing the character key to
be overwritten.

2.3.3 Line Deletion (CRTL-X)

A complete line can be deleted by pressing and hold-
ing the CTRL key while the X key is pressed.

2.3.4 Entering A Correct Line (RETURN Key)

When a command or line is correct it is finally entered
by pressing the RETURN key.

2.4 LOADING A DISC

Until we deal with formatting in para 2.7 you should
use the utilities disc (supplied with your System 5).

Carefully remove your disc from its white protective
envelope.

Do not try to remove the disc from its black cover.
Open the disc retaining door on the front of the disc
drive. If you have two disc drives use the left hand one
(Drive 0). Carefully insert the disc, complete with black
protective cover, label outermost, Write Protect Notch
uppermost, into the slot in the disc drive. When the
disc is fully inserted, close the disc retaining door. The
disc is now ready to be read.

2.5 READING A CATALOGUE

In para 2.4 the utilities disc was loaded into Drive 0.

You can find out what files are on a disc by reading its
catalogue.

To read a Catalogue in Drive 0 key in:

The disc drive lamp which comes on for a short time
while the System is accessing the disc confirms that
the disc drive is working.

You should now have the Catalogue of the Drive 0 disc
on the screen. The Catalogue will depend on the
utilities you have been supplied with, but will be
something like:

Utilities Disc drive 0 qual option 0

: #COMPACT #COPY

#COPYF #DUTY

#FORM80 #INFALL

*_

File Names are listed alphabetically in two columns.

The screen tells us that:

— The disc TITLE is "Utilities Disc"

— The disc is located in Drive 0

— Qualifier space is currently being used (we will
deal with this later).

— The disc is set to OPTION 0 (we will deal with
this later).

— No characters to the left of the ":" de-limiters
indicate that qualifier space has been allocated
to all of the files (again, we will deal with this
later).

— Six Files exist with the file names, INFALL,
COPY, COPYF, COMPACT, DUTY and
FORM80.

3

- All six Files are LOCKed (Write Protected by
software — more of this later) indicated by the #
symbol.

At the end of the CAT listing the DOS* and flashing
cursor indicates that the DOS is waiting for a new
entry.

—

The DOS recognises the disc surfaces available to you
as drive numbers. The drive numbers available depend
on the hardware environment, i.e. the number and type
(single or double sided) of disc drives that are fitted.
The DOS allocates a drive number to each available
surface. So for a system configuration with two double
sided disc drives, the left hand disc position has two
surfaces number 0 and 2, while the right hand disc
position has two surfaces numbered 1 and 3. Figure 2(
a) shows the numbering for this configuration. If we
have two single sided disc drives fitted, the left hand
one is numbered 0 and the right hand one is numbered
1. Figure 2(b) shows the numbering for this
configuration. If only one double sided disc drive is
fitted, the two surfaces are numbered 0 and 2, see
Figure 2(c). One single sided disc drive provides one
surface numbered 0, see Figure 2(d).

Figure 2. Drive Numbering

Mistakes in numbering can be made when specifying
drive numbers in DOS commands. For example, in a
twin drive double sided system, COPYing from Drive 0
to 2 would result in transcribing a file from one surface
to the other on the same disc instead of, as intended,
from disc to disc. It is a good idea to label the drives for
the particular configuration so that mistakes of this sort
do not happen.

In para 2.5 when we read the catalogue, we did not
specify from which drive we were to read the Cata-
logue. Whenever the drive is not specified the current
drive (set to 0 after Break) Catalogue is read. We can
specify from which drive DOS is to read the Catalogue
by the entries CAT0, CAT1, CAT2 or CAT3. When the
DOS assumes a parameter through omission it is said
that the DOS "defaults" to an assumed parameter.
Some other DOS commands default through omission
and will be described when they occur.

If the drive number is specified in the CAT command, it
sets the current drive to that specified (the DRIVE
command can also be used to set the current drive).

2.6.1 Using Drives

When we first entered DOS the current drive was set to
Drive 0. This allows file access to Drive 0. To access a
drive other than 0 the DRIVE command is used with the
format:

where "1" is the new current drive.

An alternative way of changing the current drive is with
the CAT command. In para 2.5 we read the catalogue
of the current drive by not specifying the drive. If we,
however, use the CAT command specifying a drive
other than the current drive, the current drive is
changed to that specified. For example, if the current
drive is 0 and we enter:

the catalogue of Drive 1 is displayed and the current
drive is changed to Drive 1.

Where a file is loaded and run using the file name
alone, that file can be accessed from Drive 0 only.

2.7 FORMATTING A NEW DISC

Before you can use a new disc it must first be for-
matted. It is recommended that whenever a new box of
discs is opened the discs are all immediately
formatted.

When you read the catalogue of the utilities disc (in
para 2.5), the listing included either FORM40 or
FORM80. The version will depend on whether 40 or 80
track disc drives are fitted to your system. The
procedure is the same for both FORM40 and FORM80.

4

To format a new disc, insert the utilities disc into drive
0, check using the CAT command that the file
FORM40 or FORM80 is present. Type in the file
name given in the Catalogue:

(either FORM40 or FORM 80)

followed by RETURN .

DOS now loads the formatting program into memory
at the location given in the File Specification and runs
the program.

The message:

Do you really want to format drive 0 ?

will appear on the screen.

The utilities disc in drive 0 must now be removed and
replaced by the new disc to be formatted.

Once the disc to be formatted is in position, the YES
response is keyed in.

The formatting starts immediately and the message:

Formatting drive 0

is displayed. As each track is formatted and verified,
the track number is displayed as follows:

00 01 02 03 04 05 06 07 08 09

0A 0B 0C 0D 0E 0F 10 11 12 13

14 15 16 17 18 19 IA 1B IC ID

IE IF 20 21 22 23 24 25 26 27

disc formatted

If formatting is unsuccessful because the disc is Write
Protected the message:

Crunch

will be displayed,

If formatting is unsuccessful for other reasons the
message:

YY Failure at XX

will be displayed, which means "disc error YY at sec-
tor XX on the disc".

By replacing the new formatted disc with an un-
formatted disc, and typing GO RETURN a series of
discs can be formatted.

To format side 2 type DRIVE2 then GO.

With twin drive installations (either single or double
sided), the utilities disc can be left in drive 0 and the
disc to he formatted may be mounted in drive 1 (single
sided)) or drive 1/3 (double sided). In this case, before
typing F 0 R M 4 0 or F 0 R M 8 0 , type

in DRIVE (drive number), selecting the drive to be
formatted. Whenever a drive other than 0 is selected,
any subsequent file execute call will search for that file
in drive 0 instead of the drive selected, unless RUN is
used.

2.8 LOADING, SAVING AND DELETING FILES

2.8.1 Introduction

The LOAD and SAVE DOS commands are similar in
function to the BASIC's LOAD and SAVE command
but they are NOT the same. The DOS LOAD and
SAVE commands are sometimes known as "Star
Load" and "Star Save" to avoid confusion. The DOS
DELETE command is unrelated to the Delete key
function.

Before you start loading and saving files you need to
know what the terms File Name, Start Address, End
Address and Execution Address mean.

FILE NAME
The File Name:

- Must be from 0 to 7 characters long.

- Must not include spaces unless File Name is
enclosed in quotes (" ").

- Must not contain an odd number of quotes (").
- Trailing spaces are ignored.

You must allocate a File Name to anything you save.
You must also give the File Name when you load it.

START ADDRESS
The Start Address is the (start) address in memory to
which the file is loaded, or, the (start) address in
memory from which the file is saved. We will see in
para 2.8.2 that we can either load a file to the same
start address from which it was originally saved, or we
can load the file to a new start address.

Programs, text or data entered from the keyboard
normally have a start address of #2800. (# means
hexadecimal).

END ADDRESS

When a file is saved the DOS needs to know the last
memory address to be saved. This last memory
address saved is known as the End Address.

EXECUTION ADDRESS
The Execution Address is the address in memory at
which the program is entered when it is Run. If you fail
to give an Execution Address, the program will begin
to Run at the Start Address.

5

2.8.2 Loading a File

In para 2.7 we used a file called FORM40 (or
FORM80) simply by entering it's name, followed by a
RETURN. This is the method generally used to Load
and Run a machine code program from Drive 0.

If you have BASIC and you want to Load and Run it,
you should mount the BASIC disc in Drive 0 (the left
hand drive, if you have a twin drive System 5), and
key in BASIC followed by RETURN from your key-
board. Different versions of BASIC may have different
names, so it's a good idea to check the name of your
version by first using the CAT command (as des-
cribed in para 2.5).

To Load and Run a machine code program from a
drive other than Drive 0 or a BASIC Program listing,
separate Load and Run DOS commands must be
used after setting the current drive (see para 2.6.1).

LOAD (File Name) followed by RETURN, loads the
named file from disc to the memory. The file is loaded
to the same memory location that it was originally
saved from.

If you wish to load a file to a memory address other
than that from which it was originally saved, you must
specify the start address, i.e. LOAD (File Name) (Start
Address).

2.8.3 Saving Files

Files are saved using the SAVE (File Name) (Start
Address) (End Address + 1) DOS command.

Some program files may require to be executed from
some point within the program. In this case the com-
mand SAVE (File Name) (Start Address) (End
Address + 1) (Execution Address) is used.

2.8.4 Deleting Files

Files may be deleted using the DOS command
DELETE (File Name).

When files are deleted, gaps occur, often leading to
inefficient disc usage. It is recommended that periodic
housekeeping is carried out using the COMPACT
utility (described later in Section 5).

2.9 USiNG BASIC

2.9.1 Introduction

We have already mentioned that files can consist of
programs, text or data (or a combination of all three).
When we speak of programs we mean machine code
programs. Your BASIC programs are handled by the

DOS as text files. This may seem strange at first, but in
Section 3 we will see that the DOS recognises only
DOS commands, and not BASIC commands. BASIC,
however, is a machine code program and can be
loaded and run from Drive 0 by simply entering the file
name BASIC (in the same way that we loaded and ran
the FORM40 utility in para 2.7).

2.9.2 Loading and Running BASIC
To load and run BASIC you must first insert your BASIC
disc in Drive 0 (as described in para 2.4). Check the
BASIC File Name using the CAT0 command (as
described in para 2.5). You must now load and run
BASIC by keying:

Your screen will now show the > BASIC prompt (with
the flashing cursor) indicating that you can now key in
your BASIC Program. Your BASIC Manual tells you
how to program in BASIC.

2.9.3 Saving a BASIC Program

To save your BASIC program you use the BASIC SAVE
command. This is slightly different than the DOS SAVE
command in that the file name must be enclosed in
quotes and no space is required after SAVE.

Your BASIC disc should be Write Protected, so remove
it and replace it with a formatted disc in Drive 0. If you
are going to call your BASIC program "FRED", key in:

If you have a twin drive system, you can save on to
Drive 1 by keying *DRIVE 1 before saving as above.

2.9.4 Loading a BASIC Program

A BASIC program can only be loaded after BASIC
itself has been loaded and run (see para 2.9.2).

To load a BASIC program insert your program disc in
Drive 0 and key in:

You can check that it has been loaded by keying in:

and you can run your BASIC program by keying in:

2.9.5 Returning to DOS and Back

When you are in BASIC you can return to DOS by
pressing the BREAK key.

6

You can subsequently return to BASIC by keying in:

Unfortunately, when you re-enter BASIC in this way,
you lose the BASIC program that you are using.

BASIC however, has a method of using all the DOS
commands rather like subroutines. This method
simply uses the DOS command preceded by a "*" in a
BASIC program line, e.g.

40 *CAT

will when running BASIC (at line 40), print the cata-
logue of the current drive. if you wish to use DOS
while entering a BASIC program you omit the BASIC
line number.

2.9.6 BASIC Commands Associated with DOS

BASIC has a number of commands which allow you
to create and use files for data, text and programs.
We will look at these commands and how they are
used later.

FOUT

This command creates and opens a file for output and
gives you a File Handle which you subsequently use
for output. The command is used in the form:

30 D=FOUT"FRED"

FRED is the File Name, "D" is the File Handle. You
will subsequently use "D" in your BASIC program to
identify that file in output operations.

if the file "FRED" already exists, DOS will use that file.
If the file "FRED" does not exist, DOS will create that
file.

FIN

This function opens a file for input and update. The
function is used in the form:

70 D=FIN"FRED"

FRED is the File Name. "D" is the File Handle. You will
subsequently use "D" to identify that file in input
operations.

PUT

This statement sends a four byte word to a file. The
statement is used in the form:

40 PUT D,563

where "D" is the File Handle (see FOUT above) and
563 is a number to be output to the file.

BPUT
This statement sends a single byte to a file. The state-
ment is used in the form:

30 BPUT D,23

"D" is the File Handle (previously obtained using the
FOUT function). 23 in this case is the value of the byte
to be output (any number between 0 and 255 can be
represented in a single byte).

SPUT
This statement sends a string to a file. The statement
is used in the form:

50 SPUT D,A

"D" is the File Handle (previously obtained using the
FOUT function). "A" is the pointer to the start of the
string.

The use of "A" rather than "$A" requires a few words of
explanation at this point. Acorn BASIC requires the
allocation of a space for a string anywhere safe (
remember we said that BASIC programs are really
text). This is done using a BASIC system variable
called TOP which points to the next free location
above your BASIC program text. If we wish to input a
string $A with a length of up to (say) twelve characters
we could allocate space by the BASIC program line:

10 A=TOP; B=T0P+ 13

This allows twelve characters plus an "end of string
marker".

The BASIC line 50 shown above will send out char-
acters to the file (pointed to by "D"), starting at A and
finishing at the "end of string marker". This means that
within the limits set by BASIC line 10, whatever length
strings we send out to disc, no file space is wasted by
gaps when strings are different lengths.

GET
This function reads a four byte word from a file and
reads it's value. The function takes the form:

80 J=GET D

OR.

80 PRINT"THE FIRST NO.FROM FRED IS"GET D

where "D" is the File Handle. J in this program line
points to the value read from the file. Before the GET
function is used in a program the file must be opened
for input and "D" determined by the FIN function in the
form:

70 D=FIN"FRED"

The GET function is the usual way to input numbers
from a data file.

7

BGET
This function returns a single byte from a file. The
function takes the form:

80 K=BGET D

OR

80 PRINT"THE FIRST BYTE FROM FRED IS"BGET D

where "D" is the File Handle previously determined
by the FIN function (see BASIC line 70 above).

SGET
This statement reads a string from a file. The state-
ment is used in the form:

90 SGET D,A

where "D" is the File Handle (obtained by FIN). "A" is
the pointer to the beginning of SA (initialized as
described in SPUT).

EXT
This function returns the extent (length) of a file in
bytes. The function is used in the form:

60 R=EXT D

where "D" is the File Handle (obtained by FIN or
FOUT) and R is the pointer to the number of bytes in
that file.

PTR
As we output to or input from a file DOS keeps a
pointer to our position within that file. We can read
this position using the PTR function for any file that is
open for output, or open for input (FOUT and FIN
respectively). The function is used in the form:

75 PRINT PTR D

where "D" is the File Handle (given by FIN). PTR
gives our position in bytes.

In random file operation this DOS pointer can be
modified through BASIC using the form:

40 PTR D=PTR D+23

where "D" is the File Handle obtained by the pre-
ceding FIN or FOUT statement. This BASIC program
line will move the DOS pointer on by 23 bytes. The
next file access will then be 23 bytes further on.

The pointer returns to the start of the file when the file
is shut and subsequently re-opened (by FIN or FOUT)
.

SHUT
This statement closes input or output files. We can
shut individual files by using the form:

100 SHUT D

where "D" is the pointer to the file we wish to close.

We can shut all files by using the form:

100 SHUT 0

2.9.7 Control Codes and BASIC

The Operating System (OS) within DOS has a number
of printer and screen control codes as shown in Table
1. All of the OS control codes except COPY and the
Cursor controls can be used within BASIC Programs.

Table 1. Operating System Control Codes

All of the Control Codes can be entered from the
keyboard by pressing and holding the CTRL key while
the appropriate character key is pressed.

To include a Control Code within a BASIC program
the PRINT $ command is used. The usual form is:

40 PRINT $#C

OR

40 PRINT $12

where #C is the hexadecimal number corresponding to
Form Feed (Clear Screen and Home Cursor) and 12 is
its decimal equivalent. These BASIC lines perform the
Formfeed (clear the screen, moving the cursor to the
top left hand position).

2.10 DISC SECURITY

Programs, text and data stored on disc may represent
weeks, or even months of work, and care must be
taken not to lose them. DOS has special facilities
which prevent accidential overwriting or deletion.

8

2.10.1 Write Protection Notch

Each disc has a square Write Protection Notch on
one edge, see Figure 1. This may be covered to
prevent accidental erasure of the disc. Every box of
discs is supplied with a number of self-adhesive tabs
which, when wrapped around the notch will prevent
the disc being overwritten. All utilities should be write
protected.

2.10.2 Software Lock

DOS provides you with a command which will prevent
accidental erasure of individual files.

The command:

will write protect the file "FRED". All utilities and
programs should be locked.

You can unlock an individual file by the unlock
command:

which will remove the write protection of the file "
FRED".

2.10.3 Back-Up Discs

It is important to keep back-up discs of all utilities,
important programs and data files.

2.10.4 Transaction File Organization

Data Processing Centres using large main frame
computers usually use a disc or tape management
system called Transaction File Organization. This can
sometimes be used in System 5 applications to add a
measure of security to large data files which are sub-
ject to frequent change. A typical application is in a
stock control system where items are issued or
received continually, bui where re-ordering occurs
only periodically (say once a day).

The principle is that the large database file (stock, re-
order codes, suppliers, minimum stock levels etc) is
kept locked during normal transaction periods. All
issues and receipts of stock are handled by a simple (
and fast) program which creates and adds to a file (on
a separate disc) containing only changes or trans-
actions.

When issues and receipts of stock cease (say lunch-
time), another program is entered which uses the
transaction file to update the large database file and,
subsequently, to provide re-ordering printouts etc.

The large stock database file (which may take days or
weeks of physical stocktaking to re-create) is thus
protected for much of the time.

A secondary advantage of Transaction File Organiz-
ation is that the lengthy program searches and sorts
associated with re-ordering are avoided allowing the
user immediate access for input of issue and receipt
data.

2.10.5 Ancestral File System

A disadvantage of the Transaction File Organization
outlined in para 2.10.4 is that if a system failure occurs
while the stock database is being updated, the
database could be corrupted or lost. The Ancestral File
System is a method of minimising the effect of such a
catastrophe.

In principle, the Ancestral File System uses three
database and three transaction files, all on separate
discs, labelled Grandfather, Father and Son. At each
update period, the Son database and transaction files
are used to create a new database file on the (old)
Grandfather disc, Thus the (old) Grandfather becomes
the (new) Son, the (old) Son becomes the (new)
Father and the (old) Father becomes the (new)
Grandfather. The transaction and database files (now
Fathers) used to create the Son database file are kept
together in a safe place and, should a catastrophe
occur, can be used to re-create the Son database file.

3. DOS FEATURES

3.1 TRACKS, SECTORS AND BYTES

Information is written onto the disc in concentric
circles, called tracks. Your System 5 will be equipped
with either 40 or 80 track Floppy Disc Drives. Each
track is divided into 10 sectors and each sector is
divided into 256 bytes. Each byte corresponds to one
character. Floppy Disc Drives may be single or double
sided types.

3.2 FORMATS

3.2.1 Disc Format

Because the user allocates file names as character
strings, and the computer recognises tracks and
sectors by numeric representation of the file's physical
location, an area on the disc is allocated for an index
or Catalogue seen by typing CAT. This area is always
located in Sectors 0 and 1 on disc. It supplies the DOS
with a catalogue to locate a file quickly. The user may
allocate a TITLE to a particular disc surface and the
Title is stored in the Catalogue.

Each File Name in the Catalogue has it's position on
disc stored. Other file parameters, some allocated by
the user, and some determined by the DOS, are

9

entered against each file in the Catalogue. Among the
user defined parameters stored against each file in
the Catalogue are:

- LOCK, (#), which is a software write protect
facility.

- Qualifier, which is associated with the SET (
qualifier) DOS command. This allows, in asso-
ciation with the USE (qualifier) DOS command,
division of a TITLE (disc surface) into a number
of groups of files.

- Start Address. This allows the DOS command
LOAD (file name) to specify loading to memory
location specified by the file. This parameter is
originated by the SAVE (file name) (start
address) (end address) DOS command.

- Execution Address. This parameter originated by
the SAVE (file name) (start address) (execution
address) DOS command is mainly applicable to
program files used in association with the
OPTION 2 facility and for command files, e.g.
BASIC.

The length parameter is worked out by the DOS itself
when the DOS SAVE command is executed. This
parameter gives the number of bytes contained within
the file.

3.2.2 Catalogue Format

When the disc is started the Catalogue is copied into
memory, and this Catalogue is assumed valid while
the disc is rotating, Care must be taken with some
types of drive (which spin when a disc is inserted) that
the disc has stopped before using it. Reading
successive files therefore requires as little head
movement as possible. Changes made to the
Catalogue cause it to be written out to the disc. The
Catalogue and file buffers are stored in Random
Access Memory at locations 2000 to 27FF (hex) and
this RAM must be present in the system.

3.3 THE COMMAND LINE INTERPRETER

It is useful, though not essential, to understand how
the OS and DOS work. The two main inputs to the OS
are from the keyboard and the disc. The input strings (
of characters and codes) from the keyboard are put,
first of all, into a buffer store (part of the computer's
memory). Whenever a string ends with a Carriage
Return code a special OS program called the
Command Line interpreter is automatically run. The
Command Line interpreter or OSCLI for short, does
exactly what its name says — it looks for and

interprets a command line. But how does the OSCLI
know that a string in the buffer store is a command?

The OSCLI, when it looks at the string in the buffer
store, compares it with a Command List (or table) in the
computer memory (DOS ROM). When comparison is
found, an entry against that command code vectors the
program execution to the subroutine in OS (or DOS)
that executes the command. If the string is not found in
the DOS ROM, the DOS looks it up on disc (and will
load and run the file so named). if the string is still not
found an error message occurs. Figure 3 illustrates the
basic principles of operation of a Command Line
Interpreter.

When the system is powered up or reset (using the
BREAK key), the vectors are loaded from ROM into
RAM at start address 0200 (hex).

All keyboard entries to the OS are buffered at RAM
address 0100 (hex). BASIC, however, may put them
elsewhere. The Operating System subroutine OSCLI,
on recognising and identifying a valid OS command in
the buffer, vectors the program execution to the
appropriate subroutines to implement the command
keyed in. The commands must be terminated by a
RETURN (CR) code, 0D (hex).

The System 5 Disc Operating System (DOS) extends
the Command List to provide the disc and file handling
facilities that are available. Many of the utility programs
available use the Command Line Interpreter in their
operation.

Figure 3. Command Line Interpreter

10

3.4 KEYBOARD CONTROL FUNCTIONS

The following facilities are available from the key-
board or from BASIC programs (see Table 1).

3.4.1 Start Printer, STX [CTRL-B, 02 (hex)]

This code, which is not sent to the printer, starts the
printer output stream, All further output is sent to the
printer as well as the screen until receipt of an ETX (
End Printer) code.

3.4.2 End Printer, ETX [CTRL-C, 03 (hex)]

This code ends the printer output stream.

3.4.3 Start Screen, ACK [CTRL-F, 06 (hex)]

This code starts the output stream to the screen.

3.4.4 Backspace, BS [CTRL-H, 08 (hex)]

This code moves the cursor back one position.

3.4.5 Horizontal Tab, HT [CTRL-I, 09 (hex)]

This code moves the cursor forward by one position.

3.4.6 Line Feed, LE [CTRL.-J, 0A (hex)]

This code moves the cursor down one line.

3.4.7 Vertical Tab, VT [CTRL-K, 08 (hex)]

This code moves the cursor up one position.

3.4.8 Form Feed, FE [CTRL-L, 0C (hex)]

This code clears the screen and moves the cursor to
the top left hand corner of the screen.

3.4.9 Return, CR [CTRL-M, 0D (hex)]

This code moves the cursor to the start of the current
line.

3.4.10 End Screen, NAK [CTRL-U, 15 (hex)]

This code ends the output stream, to the screen. The
only code recognised in this condition is ACK.

3.4.11 Home Cursor, RS [CTRL-^,1E(hex)]

This code moves the cursor to the top left hand corner
of the screen.

3.4.12 Copy, DC1 [CTRL-Q, 11 (hex)]

This code copies the characters above the cursor to a
new line.

3.5 ABBREVIATED ENTRIES

DOS recognises abbreviated entries for many DOS
commands. Section 4 lists, against each command,
the abbreviated entry, if any.

3.6 PRINTER, SCREEN AND KEYBOARD
STREAMS

DOS sees the keyboard as an input stream and the
screen and printer as output streams.

3.6.1 SPOOL Command

The SPOOL command opens a file for output and
copies all output stream onto that file. The file is closed
by the SHUT command. The SPOOL command format
is:

where "FRED" is the user allocated file name to the
SPOOL file.

3.6.2 EXEC Command

The EXEC command reads the named file and dis-
plays the file as characters. If the stream contains valid
DOS commands they are executed. If BASIC is
entered via a DOS command in the EXEC file,
subsequent BASIC commands are executed. This
allows a series of BASIC programs, and/or data files to
be handled consecutively,

The format of the EXEC command is:

where "FRED" is the name of the file to be executed.

3.7 AUTO-START (OPTION AND BOOT)

In para 2.5 when we read the catalogue of a disc, one
of the parameters associated with the disc was Option.
The DOS Option feature allows a series of files to be
loaded and/or run sequentially by simply pressing and
holding the SPACE bar while pressing the BREAK key.
This feature is useful where BASIC programs are
being used, especially where the BASIC programs
require access to data or text files. The Boot file (para
3.7.2) must exist on Drive 0 to be used on auto-start,

3.7.1 OPTION Command

The Option of a disc in the current drive is set using
the OPTION command format:

where "3" is the Option to which the disc in the current
drive is set.

The options available are as follows:

- Option 0 : Do not do anything

- Option 1 : Load the file named BOOT

- Option 2 : Run the file named BOOT

- Option 3 : Execute the file named BOOT

11

3.7.2 BOOT File

The Boot file provides the user with a facility which
may be used in many applications. Essentially it allows
you, in association with Option, to execute a series of
DOS commands by simply pressing and holding the
SPACE bar while pressing the BREAK key. If BASIC is
present on disc, it can be loaded and run via Boot, and
a series of BASIC Programs loaded and run via BASIC
commands within the Boot file.

CREATING A BOOT FILE
To create a Boot file you will need (after loading and
running BASIC) to enter and run a simple BASIC
program as follows:

19 A=FOUT "BOOT"

20 INPUT $TOP

30 IF $TOP = "END" GOTO 60

40 SPUT A $TOP

50 GOTO 20

60 SHUT A

70 END

SAVE "INBOOT"

RUN

Line 10 opens a file named "BOOT" for output and
allocates its pointer "A". Line 20 allows you to input a
command which is stored immediately above your
BASIC program "INBOOT". Line 30 allows you to
terminate Boot file creation by typing "END". Line 40
puts the command (from $TOP) into the Boot file (
pointed to by "A"). Line 60 closes the Boot file. The "
SAVE" line saves the Boot creation program with the
file name "INBOOT" so you can use it again.

You will now have the "?" prompt for command input
on screen. A series of commands can now be entered
from the keyboard, each terminated by a RETURN.
When your Boot file is complete typing "END" will
close the Boot file.

The Boot file:

? LOAD BASIC

? RUN BASIC

? LOAD FRED

? RUN FRED

will not work but the following Boot file will:

? LOAD BASIC

? RUN BASIC

? LOAD "FRED"

? RUN

Once we run BASIC only commands in BASIC syntax
will be executed.

As an example of the use of BOOT, we will write two
simple programs called FRED and HARRY and create
a Boot file to run them successively via the BREAK
key. First of all press and hold the DELETE key while
the BREAK key is pressed to enter DOS and then
enter:

BASIC

10 PRINT ' "THIS SHOWS THAT FRED HAS RUN" '

20 END

SAVE "FRED"

10 PRINT ' "THIS SHOWS THAT HARRY HAS RUN" '

20 END

SAVE "HARRY"

You have now loaded and run BASIC and created the
files FRED and HARRY. If you have not already done
so enter the INBOOT program and load and run it to
create the Boot file by entering:

LOAD BASIC

RUN BASIC

LOAD "FRED"

RUN

LOAD "HARRY"

RUN

PRINT ' "BOOT FILE HAS NOW BEEN EXECUTED" '

END

By pressing and holding the DELETE key while the
BREAK key is pressed you will re-enter DOS, and we
must now set the Option to 3 by keying:

OPTION 3

Now, by pressing and holding the SPACE bar while
the BREAK key is pressed at any time, the Boot file will
be executed, and with our example, the screen will
display:

* LOAD BASIC

BASIC C000 C2B2 01000 003

* RUN BASIC

BASIC C000 C2B2 01000 003

>LOAD "FRED"

FRED 2800 C2B2 00032 002

> RUN

THIS SHOWS THAT FRED AS RUN

> LOAD "HARRY"

HARRY 2800 C2B2 00033 013

>RUN

THIS SHOWS THAT HARRY HAS RUN

>PRINT ' "BOOT FILE HAS NOW BEEN EXECUTED" '

BOOT FILE HAS NOW BEEN EXECUTED

Should you wish to Break without executing Boot, you
must press and hold the DELETE key while the
BREAK key is pressed.

To disable the auto-start, re-enter DOS and enter
OPTION 0. Alternatively, if you are in BASIC, enter
*OPTION 0.

12

3.8 EXEC COMMAND

Any file created in the same way as Boot (para 3.7.2)
can be executed by the DOS command EXEC. If you
still have your Boot file on disc set Option to 0 (see
para 3.7.1) and enter EXEC BOOT (from DOS) or (
from BASIC) enter *EXEC BOOT. The Boot file will
now run with the same screen display as in para 3.7.
2. The EXEC format is given in para 3.6.2.

3.9 QUALIFIERS

In para 2.5 the CAT command display showed that
qualifier "space" was currently being used, and that all
files had a space to the left of the colon (:) indicating
that all files were allocated the qualifier "space".

The qualifier facility is a useful aid to file handling. It is
implemented by means of the SET and USE DOS
commands.

The SET command sets the current qualifier to any
character until either the BREAK key is pressed, or
the SET command is again used. Pressing the
BREAK key sets the current qualifier to "space". Files
are saved with the current qualifier (except when a file
is saved immediately after a USE command). Note
that no space is allowed between SET and the char-
acter, e.g. SETA is acceptable while SET A is not.

The USE command allows the next file operation to
use other than the current qualifier. After the next file
operation the qualifier reverts to the current qualifier.

The most common use of qualifiers is to separate files
according to their content, e.g. qualifier B for BASIC
programs and qualifier D for data files.

There may be two (or more) separate files with the
same file name providing they are in separate quali-
fiers. Hence with the Assembler you can have a
source file called, say, UADE01 in qualifier "space"
which you will assemble into an object file with the
same name providing it has a different qualifier.

3.10 SPOOLING

The SPOOL command will open a file for copying. To
demonstrate you should enter:

SPOOL SPFILE

or if you are in BASIC:

*SPOOL SPFILE

For demonstration purposes, to put something in the file
named SPFILE you could EXEC BOOT, see para 3.8 (
or *EXEC BOOT if you are in BASIC).

To disable the SPOOL facility (closing the file) you
must enter SHUT (or *SHUT SPFILE from BASIC).

You will need a small BASIC program to read your
SPFILE, so re-enter BASIC and key in this program:

10 D=FIN "SPFILE"

20 C=EXTD

30a IF C=PTRD GOTO b

40 A=BGET D

50 IF A=10 PRINT $13

60 PRINT $A

70 GOTO a

80b SHUT D

90 END

Line 20 uses the EXT command to determine the length
of the file. Line 30 checks to see if the end of file has
been reached before reading in a character from the
file. Line 50 tidies up the screen format, adding a
Return to each Line Feed. Saving this file with the file
name "SPREAD" will allow you to use it again. By
changing the file name in Line 10 you can read any file.

3.11 DOS POINTER

When accessing files DOS maintains a pointer to the
current access position within the file. The pointer can
be read or changed by the BASIC PTR function. We
used PTR in the SPREAD program (Line 30) in para 3.
10 to exit from a loop when the end of file was reached.
The pointer is set to "0" whenever a file is opened (FIN,
FOUT' SPOOL, etc). We will look at the DOS Pointer
again in para 6.1.

3.12 DISC TITLES

We can give the disc in the current drive a title using the
command TITLE followed by a space and the disc
name we are allocating (in BASIC the command is
preceded by a *). Up to 13 characters may be used for
a title.

3.13 INFORMATION ON FILES

3.13.1 INFO Command
We can read information on any file in the current drive
using the INFO command (followed by a space and the
file name). The information displayed is in the following
form:

13

3.13.2 MON and NOMON Commands

The MON command turns on a message system
which displays a file's information at each file access.

The NOMON command turns off the message system
which was originally turned on by the MON command.

3.14 MACHINE CODE PROGRAM EXECUTION

To execute a machine code program the GO
command may be used (followed by a space and the
execution address). We used this command in para 2.
9.5 to reenter BASIC at C2B2 from DOS.

If the execution address is omitted the last known
execution address will be used. Note that the current
execution address is destroyed by CAT, and INFO
does not set the execution address.

If a machine code program is on Drive 0 you can use
the file name directly (as we called FORM40 and
BASIC).

4. DOS CO#MMANDS AND ERROR
MESSAGES

In the following commands, error and other
messages, text, data and programs are said to be "
displayed". They can, in fact be displayed on screen
or printed or both, subject to the preceding Operating
System control codes entered, see Table 1 in para 2.
9.7.

File names and disc titles must be enclosed in quotes
unless no spaces exist in file name. Only even num-
bers of quotes (or non at all) are allowed in file names
or disc titles. Up to 13 characters are allowed in disc
titles, and up to 7 characters are allowed in file
names.

Legal drive numbers are dependent on the disc drive
configuration, see pare 2.6, but illegal drive numbers
will simply cause the system to wait for the drive
which is not there. Abbreviated command formats are
shown following the full command formats.

4.1 DOS COMMANDS

This command causes the Catalogue of drive (drive
number), (or the current drive if (drive number) is
omitted) to appear on the screen.

A typical Catalogue will look like:
*CAT0

Basic disc v1 drive 0 qual s opt 0

: #BASIC #LISP

s: ZOMBY

The title of the disc is Basic disc v1 ; we are currently
using drive 0 and qualifier s. The disc option is 0 (no
auto-start features). Two files have been saved in
qualifier "space", both of which have been locked to
prevent careless deletion. One file has been saved in
qualifier "s" and this has been left unlocked. The
Catalogue is sorted alphabetically by qualifier and file
name when it is output. The (drive number) can be
omitted, or it must be 0, 1, 2 or 3. If outside the range 0
to 3 then the message:

Drive ?

will he displayed.

If the (drive number) is specified, the default drive for
subsequent commands is changed to that specified.

This command deletes the (file name) in the current
qualifier from the current disc's Catalogue. If the entire
disc is Write Protected a

Disc prot

message is displayed. If the file is not found a

File ?

message is displayed. !f the file is Locked a

File prot

message is displayed.

This command causes the Catalogue of the drive (
drive number) to be loaded into memory at hex start

14

address 2000. The command is often used to wait
until completion of the previous operation. The drive
number can be omitted, or it must be in the range 0 to
3. if outside the range then the message:

Drive ?

will be displayed.

This command sets the current drive to (drive number)
where (drive number) is either in the range 0 to 3, or is
omitted (for compatibility with CAT or DIR). If (drive
number) is outside the range the message:

Drive ?

will be displayed. If (drive number) is entered as a
multi-character then the message:

Syntax ?

will be displayed. Drive 0 is set on BREAK.

This command reads and displays as characters the
bytes from (file name) in the current qualifier on the
current disc. If (file name) is not found a

File ?

message is displayed. After all the bytes have been
read, (file name) is automatically closed.

This command causes the machine code subroutine at
(execution address) to be entered. If (execution
address) is not given, the last known execution
address is used. Note that the current execution
address is destroyed by CAT, and INFO does not set
the execution address.

This command produces information about the (file
name) in the current qualifier on the current disc. If the
file is not found a

File ?

message is displayed. The information displayed is in
the following form:

This command loads the file (file name) on the disc in
the current drive from the current qualifier into the
memory at (start address). The (start address)

may be omitted when the file's own (start address) is
used. If the file is not found a

File ?

message is displayed.

This command Write Protects an individual file.

The command locks the (file name) in the current
qualifier on the current disc. If entire disc is protected
a

Disc prot

message is displayed. If the file is not found a

File ?

message is displayed.

This command turns on a message system which dis-
plays a file's information at every file access.

This command turns off the message system which
was originally turned on by the MON command.

This command sets the option of the disc in the current
drive to the number (option). If the entire disc is
protected, a

Disc prot

15

message is produced. The option enables auto-start
use of the file BOOT in qualifier "space" on drive 0
when the system is reset by the BREAK key. The
auto-start may be totally defeated by pressing the
DELETE key while the BREAK key is pressed, and is
subsequently enabled by pressing "space" while the
BREAK key is pressed. The possible modes are:

— Option 0 : do not do anything
— Option 1 : load the file BOOT
— Option 2 : run the file BOOT
— Option 3 : exec the file BOOT

In option 0, the system will not mind if BOOT is not
present, in the other modes, a

File ?

message will be displayed if BOOT does not exist
when the BREAK key is pressed.

The (file name 2) is optional.

This command loads the file (file name 1) on the disc
in the current drive from the current qualifier into
memory at the (start address) of the file. The optional (
file name 2) is turned back into the original string form
and stored in memory at hex start address 0140,
terminated by a RETURN (CR character).

where (fn) = (file name)
(sa) = (start address)
(ea+1) = (end address + 1)
(xa) = (execution address)

The (execution address) is optional. When omitted it
defaults to the start address.

This command saves the block of memory between (
start address) and (end address + 1) to the file (file
name) in the (current qualifier) of the Catalogue. If the
entire disc is Write Protected a

Disc prot

message is displayed. If the (file name) is Locked a

File prot

message is displayed. If (file name) exists and is not
Locked, or the disc is not Write Protected, the (file
name) is deleted. Starting at the extreme outside edge
of the disc (track 0), a gap is searched for which

is large enough to contain the block to be saved. If a
large enough block cannot be found a

Disc full

message is displayed. If there are already 31 files on
the disc Catalogue a

Full

message is displayed.

This command sets the current qualifier to (current
qualifier), where (current qualifier) can be any
character. All following file access will use only the (
current qualifier) portion of the Catalogue. Qualifier "
space" is set on keying BREAK.

This command closes all files for input or output.

This command opens file and copies all characters
going out onto it. The Spool facility is stopped by the
SHUT command.

This command sets the title of the disc in the current
drive to the first 13 characters in (disc name), filling
with spaces if there are fewer than 13 characters. It is
possible to include Form Feed (CTRL—L) at the start
of a Title, so that Catalogues appear at the top of the
screen. If the entire disc is Write Protected, a

Disc prot

message is displayed.

This command unlocks the (file name) in the current
qualifier on the current disc. If entire disc is protected
a

Disc prot

message is displayed. If the file is not found a

File ?

message is displayed.

This command allows the next file operation to use the
(qualifier) portion of the Catalogue. After the file

16

operation is complete, the previous (current qualifier)
will be made current again. If an error occurs in the
file operation, the qualifier does not immediately revert
so that the operation can be repeated. To force
reversion after an error, use a MON or NOMON com-
mand. Two successive USE commands will result in
the loss of the original (current qualifier).

4.2 ERROR MESSAGES

Crunch : An attempt has been made to for-
mat a Write Protected disc.

Disc Full : A block large enough to hold the file
cannot be found. Periodic
housekeeping with the COMPACT
utility will minimise the occurrence
of this error.

Disc Prot : A Write operation has been attemp-
ted to a Write Protected disc.

Drive ? : Drive number is incorrectly (or not)
specified.

File ? : File name cannot be found.

File Prot : A Write operation has been attemp-
ted to a Write Protected file.

Full : 31 files alread-y exist on the current
disc.

Syntax ? : Command is recognized but Syntax
error exists.

Disc error 08 : During a disc Read operation a
clock bit was missing.

Disc error 0A : During a disc transfer the processor
did not respond fast enough (prob-
ably due to a faulty Floppy Disc
Interface Board)

Disc error 0C : The CRC (cyclic redundancy check)
derived from the ID data read back,
differed from that which was
originally loaded to the disc.

Disc error 0E : The CRC derived from the data
read back on a disc read differed
from that loaded to the disc.

Disc error 10 : During a transfer the disc stopped
rotating (probably due to a badly
inserted disc).

Disc error 14 : The Floppy Disc Controller Inter-
face Board failed to find Track 0.
This error usually results in
attempting to access an
unformatted disc.

Disc error 18 : The Floppy Disc Controller Inter-
face Board failed to find the
required sector. This error usually
results from either using an unfor-
matted disc, or the disc being
corrupted by magnetic fields etc.

4.3 FILE SPECIFICATIONS

The full File Specification is shown in Figure 4.

4.3.1 File Name

The File Name:

- Must be from 0 to 7 characters long.
- Must not include spaces unless File Name is

enclosed in quotes (" ").
- Must not contain an odd number of quotes (").
- Trailing spaces are ignored.

The File Name is specified by the user when a file is
created. Files are c+reated by:

- The DOS SAVE command.
- Calling the OSFIND routine via assembler (see

para 7.1 and 7.3) to perform an open-foroutput.
- Calling the OSFIND routine via the BASIC

FOUT function (see para 6.1), e.g.
X = FOUT "FRED" in 4K BASIC

The File Name can only be changed by execution of
the DOS command LOAD (old file name) followed by
the SAVE (new file name) command.

4.3.2 Qualifier

The Qualifier:

- Must be any single character (or space).

All files are saved with a particular qualifier. The
qualifier serves to divide the disc Catalogue into
sections. The most common use of the qualifier is to

Figure 4. Full File Specification
17

separate the files according to their content, e.g.
qualifier B for BASIC programs and qualifier D for data
files.

There may be two (or more) separate files with the
same File Name providing they are in separate quali-
fiers. Hence with the assembler the user may have a
source file called UADE01 in qualifier "space" which
will be assembled to give an object file with the same
name providing it has a different qualifier.

All file operations use the currently selected qualifier.
After a reset, the qualifier is set to "space". The DOS
provides two commands to change the current
qualifier:

SET(qualifier) sets the qualifier to (qualifier) until
another command is used to change
it.

USE(qualifier) sets the qualifier to (qualifier) for the
next file operation only, after which it
reverts to its previous value.

Note that there must be no space between the com-
mand and the (qualifier).

4.3.3 Load Address

The Load Address specifies the address in memory to
which the file is loaded when the DOS command
LOAD (file name) is executed. The Load Address is a
four digit hexadecimal number.

The Load Address is defined when the DOS command
SAVE (file name) (load address) is executed.

When the DOS command LOAD (file name) (load
address) is executed, the (load address) in the File
Specification defaults to the (load address) specified in
the LOAD command, but the (load address) in the File
Specification is not changed. Note that files created by
OSFIND have a load address of 0000.

4.3.4 Execution Address

The Execution Address specifies the address at which
execution of a program in a File will commence when
the DOS command RUN (file name) is executed. The
Execution Address is a four digit hexadecimal number.

The Execution Address is specified when the DOS
commands SAVE (file name) (start address) (end
address + 1) (execution address) is executed. if the (
execution address) Field is omitted in the SAVE DOS
command, the Execution Address in the File
Specification defaults to the (start address).

4.3.5 File Length

The File Length specifies the number of bytes in the
file and is a five digit hexadecimal number.

The File Length is calculated by the DOS when the
command SAVE (file name) (start address) (end
address +1) is executed.

4.3.6 Physical Location (Position on Disc)

The Physical Location is a three digit hexadecimal
number specifying the physical location of the start of
the file on disc, i.e. consecutive (through all tracks)
sector number. The Physical Location is allocated by
the DOS when the file is created.

The DOS allocates a position on disc when the SAVE
DOS command is executed.

5 UTILITI ES

A Utility Mini-Floppy Disc will be supplied with your
System. The programs may change with different
system variants, so your Utility Disc may not be
compatible with other systems.

If a disc with the utilities on it is in drive 0 typing just
the utility name will cause the program to be loaded
and run, thus the utilities appear to operate as
additional DOS commands. The utilities disc may have
a BOOT file which will cause a description of the disc
programs to appear on the screen at system start up.

In a single drive system the disc with the utilities on will
need to be removed and the disc to be operated upon
inserted, the programs contain a waiting state for this
operation where appropriate. Dual drive, single sided
disc systems will usually have the utilities on a disc in
drive 0 and the user disc in drive 1. Dual drive double
sided disc systems will usually have the utilities on a
disc in drive 0 and the user disc in drive 1/3. Select
drive 1/3 using the CAT1 (or 3) or DRIVE1 (or 3) as
appropriate before running the utility. The original utility
disc supplied with a system is best kept Write
Protected so that it cannot be accidentally formatted or
copied on to.

18

5.1 INFALL

INFALL uses the INFO command in the DOS to give
load address, run address and disc sector information
on all the files on a disc.

5.2 COPY

COPY is for use on dual drive systems, it is loaded on
entering COPY (source drive) (destination drive) and
the system then stops. Pressing the space bar will
cause a complete copy to occur.

5.3 COMPACT

After saving and then deleting files on a disc unused
sectors will appear where a file was deleted and no
files of the same length have since been saved.
Copies one file after the other into RAM and then re-
saves them with no gaps between them. Waits for the
space bar to be pressed.

"SAVE"d files use the first available space on disc
which is large enough to accommodate the file. Files
created use the space occupied by a previous file of
the same name (if it existed). If the spare space on
disc becomes split up into small parts, attempting to
create a large file will cause a "no room" error. To
collect all the free space together, the COMPACT
utility should be used.

5.4 COPYF

COPYF copies particular files from one drive to
another. The source and destination drives are speci-
fied as in COPY.

5.5 DUTY

DUTY copies and compacts a disc from one drive to
another.

5.6 FORM40, FORM80

FORM (formats) initializes new discs with the track
and sector format. The disc requiring formatting
should be inserted and checked with the CAT com-
mand. A description of Formatting procedure is given
in para 2.7.

5.6.1 Soft Sectoring

TRACKS, SECTORS AND BYTES
Information is written onto the disc in concentric
circles, called tracks. Your System 5 will be equipped
with either 40 or 80 track Floppy Disc Drives. Each

track is divided into 10 sectors and each sector is
divided into 256 bytes. Each byte corresponds to one
character. Floppy Disc Drives may be single or
double sided types.

DISC FORMAT
Because the user allocates file names as character
strings, and the computer recognises tracks and
sectors by numeric representation of the file's physical
location, an area on the disc is allocated for an index
or Catalogue seen by typing CAT. This area is always
located in Sectors 0 and 1 on disc. It supplies the
DOS with a catalogue to locate a file quickly. The user
may allocate a TITLE to a particular disc surface and
the Title is stored in the Catalogue.

Each File Name in the Catalogue has it's position on
disc stored. Other file parameters, some allocated by
the user, and some determined by the DOS, are
entered against each file in the Catalogue. Among the
user defined parameters stored against each file in
the Catalogue are:

- LOCK (#), which is a software write protect
facility.

- Qualifier, which is associated with the SET (
quainter) DOS command. This allows, in
association with the USER (qualifier) DOS
command, division of a TITLE (disc surface) into
a number of groups of files.

- Start Address. This allows the DOS command
LOAD (file name) to specify loading to memory
location specified by the file. This parameter is
originated by the SAVE (file name) (start
address) (end address) DOS command.

- Execution Address. This parameter, originated
by the SAVE (file name) (start address) (end
address +1) (execution address) DOS command
is mainly applicable to program files used in
association with the OPTION 2 facility, and for
command files, e.g. BASIC.

The length parameter is worked out by the DOS itself
when the DOS SAVE command is executed. This
parameter gives the number of bytes contained within
the file.

The DOS uses these above mentioned file
parameters in its' various operations. Because the
Catalogue has a fixed field format, the number of files
on each disc surface is limited to 31. Similarly, File
Names are a maximum of 7 characters and Titles are
truncated to 13 characters. We will later see how
these parameters can be displayed by the DOS
commands INFO and MON.

19

To allow the computer to access the various tracks
and sectors on the disc, after determining the relation-
ship between the File Name and the position on disc,
each track must be divided into sectors, identified,
and the beginning and end of the sector marked.
Figure 5 shows the format of each sector.

Figure 5. Sector format.

Before a disc is used for the first time it must be for-
matted. This is done with a utility called FORMat. If
your System 5 is provided with 40 track disc drives you
will have been supplied with the FORM40 version, bit if
you have 80 track disc drives you will have the
FORM80 version. Use of these utilities is described in
para 2.7.

The FORM80 and FORM40 utilities structure the
Catalogue portion of the disc (Sectors 0 and 1), and
records the sector IDs in all sectors. In subsequent
operations, the DOS provides random File access by
looking up the File Name in the Catalogue to deter-
mine the physical location and it can then immediately
access that particular file without having to serially
search until the file is found.

6. SEQUENTIAL FILE HANDLING

In para 3.11 we described the DOS file pointer. The
pointer is used extensively within user programs for
handling sequential files.

6.1 POINTER OPERATION

Whenever a file is opened for input or output DOS
creates a pointer to the current access position (in
bytes) to the file, and initializes this pointer to 0. The
BASIC line

20 D= OUT "NED"

will open the file "NED" and initialize the pointer for "
NED" to 0 which could be read by the BASIC program
line

90 PRINT PTRD

Add the program line

100 END and RUN

and the pointer will be displayed on your screen. if

we add a few program lines to output 4 bytes at a time
we can show the pointer at each file access.

30 INPUT "ENTER" B

40 PUT D,B

RUN

In response to the "?" key in any number (or char-
acter) and we will have the pointer value 4 displayed.
This is because the BASIC PUT statement outputs four
bytes at a time. If we add one more line we can output
more numbers and see the pointer moving through the
file.

95 GOTO 30 and RUN

Each time you enter a number (and RETURN) you will
see the pointer increase by 4. Try keying instead of a
single number or character, a number between 0 and
33, 554, 419 (we need four bytes to represent this
magnitude number). The PUT statement is the most
economic way of storing numbers on disc.

If we change line 40 to

40 BPUT B and RUN

we will see the pointer increment by 1 for each entry.
Using BPUT is the most economic way of storing
single characters.

If we now modify the program we can see how the file
pointer behaves with strings, so we will change lines
30 and 40, and add lines 10, 15, 35 and 99:

10 A= TOP

15 B=A+ 51

30 INPUT "ENTER" $A

35 IF $A="%" GOTO 99

40 SPUTD, A

99 SHUTD

We have now tidied up our program, providing an exit
at Line 35 and shutting the "NED" file at Line 99. Note
that Lines 10 and 15 define the maximum length of any
string to 50 characters.

If we now run our program and enter a four character
string we will see that the pointer moves from 0 to 5.
This is because DOS inserts an "end of string marker'.
This allows DOS, when retrieving strings from the file
using SGET to establish how many characters to read
for each string. So the pointer moves on by the number
of characters +1 for each string access to file. Enter a
few more strings into your "NED" file (so we can read it
later) before exiting using "%". Save this program --
you may want to use it later,

20

We will now enter a program for reading strings from "
NED" sequentially, printing the File pointer after each
string:

10 A=TOP

20 B=A+51

30 C=FIN"NED"

40 D=EXTC

50 IF D<=PTRC GOTO a

60 SGETC, A

70 PRINT '$A'

80 PRINT ' "THE POINTER IS" PTRC

90 INPUT $B

100 GOTO 50

110a PRINT ' "END OF FILE" '

120 SHUTC

130 END

When this program is run the first string is printed
together with the pointer. Pressing RETURN will
sequence through the file, printing the string and
pointer at each access. When the end of file is reached
a message is displayed and we return to BASIC.

By now you should be able to write a short program to
read files using the GET (for 4 bytes at a time) and the
BGET (one byte at a time) commands.

7. ASSEMBLY CODE ACCESS TO DOS

7.1 INTRODUCTION

The DOS file handling routines can be used with
assembly language. These routines are entered via
Jump Indirect instructions stored between FF00 and
FFFF (hex). These Jump Indirect instructions, resident
in ROM, refer to the vectors stored in RAM between
0200 and 023F. For example the routine to open or
shut a file, OSFIND, is entered at FFCE which indirectly
calls via FNDVEC at 0218. 0218 and 0219 contain the
address of OSFIND (F97A).

The file handling routines, addresses, calls and call
addresses and entry points are summarized in Table 2.

On NMI, any operating system interrupts are serviced,
otherwise:

PHA

IMP (NMIVEC)

is executed.

On IRQ or BREAK (BRK):

STA 00FF

PLA

PHA

AND #10

BNE BRK

LDA 00FF

PHA

JMP (IRQVEC)

LDA 00FF

PLP

PHP

JMP (BRKVEC)

is executed. On power up or restart, the OS intializes
the vectors from 0200 to 021A to its own handling
routines.

Acorn Operating systems use memory in Zero Page
starting from location $00AC up to location $00AD for
their own purposes. Location $00FE contains the code
of an ASCII character which is filtered from the output
to the printer, this is initialized to $0A a line feed.
Location $00FF is used for lRQ/BRK service as above.

Table 2. Summary of Routines and Calls

21

7.2 OS SUBROUTINES

The OS routines are described below:

7.2.1 OSFIND

This routine returns, in the A Register, a file handle
for the file whose name is pointed to by:

The handle is zero if the file does not exist otherwise it
is a byte of value 1 to 255. If the carry flag is set on
input the file must already exist and is opened for
reading and updating. If the carry flag is clear on input
the file need not exist, and will be used for output. The
sequential pointer is set to zero.

7.2.2 OSSHUT

This routine closes the file whose file handle is in the
Y Register. This involves writing out any buffers that
contain data that has been changed, and updating the
main disc Catalogue to show the length of the file. A
zero file handle in the Y Register will cause all
sequential files to be closed. After a file has been
closed, the same file handle may be eventually used
for a different file.

7.2.3 OSCLI

This routine interprets a string of characters held at
0100, terminated by a Carriage Return (0D), as an
operating system command. All processor registers
are used and detected errors are met with a BRK.

7.2.4 OSWRCH

This routine sends the byte in A Register down the
output channel. This channel output is usually treated
as ASCII data and special action may be taken on
ASCII control characters. No processor registers are
destroyed.

7.2.5 OSCRLF

This routine generates a Line Feed and then a
Carriage Return using the OSWRCH routine. A
Register will contain 0D on exit.

7.2.6 OSASCI

This routine uses the OSWRCH routine to output an
ASCII character except that the Carriage Return
character wil be output as Line Feed and Carriage
Return, using the OSCRLF routine.

7.2.7 OSECO

This routine fetches a byte using the OSRDCH routine
and then writes it out using the OSASCI routine.

7.2.8 OSRDCH

This subroutine fetches a byte from the input channel
into the A Register. The state of N, Z and C flags is
unknown, X and Y Registers are preserved.

7.2.9 OSLOAD

This routine loads all of a file into a specified area of
memory. On entry the X Register must point to the
following data in Zero Page:

This data is copied by the operating system and is not
lost. All processor registers are used. If the processor's
carry flag was set on input, a wait until completion is
performed by interrupt or DMA driven systems. A BRK
will occur if there is an error.

22

7.2.10 OSSAVE

This routine saves all of an area of memory to a
specified file. On entry, the X Register must point to
the following data in Zero Page:

This data is copied by the operating system and is not
lost. All processor registers are used. If the carry flag
was set on input, a wait until completion is performed
by interrupt or DMA driven systems. A BRK will occur
on an error.

7.2.11 OSSTAR

This routine sets the value of a file's pointer. On entry,
the X Register points to Zero Page locations containing
the value and the Y Register contains the file handle.
The X and Y Register contents are not lost.

7.2.12 OSBGET

This routine returns the next byte from a random file.
On entry the Y Register contains the file handle. The X
and Y Register contents are not lost and the byte is
returned in the A Register. The file's sequential pointer
is incremented after the byte is read. Errors are met
with a BRK.

7.2.13 OSBPUT

This routine adds the byte in the A Register to a
random file. On entry, the Y Register contains the file
handle. The A, X and Y Register contents are retained
and the file's sequential pointer is incremented after
the byte is added. Errors are met with a BRK.

7.2.14 OSRDAR

This subroutine returns the value of a random file's
arguments. On entry, the X Register points to loca-
tions in Zero Page where the result is to be stored, and
the Y Register contains the file handle, and the A
Register specifies the argument, where:

A=0 : the file's sequential pointer in bytes
A=1 : the extent (length) of the file
A=2 : the region of the file

The data, typically 3 bytes is placed at X, X+1, X+2.
The X and Y Register contents are retained.

7.3 RANDOM FILE OPERATION

7.3.1 Introduction

The DOS entry points involved with random files are:

OSFIND prepare file for random access
OSSHUT close file, release buffer, tidy up
OSRDAR read parameters of some open file
OSSTAR update parameters of some open file
OSBGET read byte from file
OSBPUT write byte to file

At any one time there may be up to five random files
active. These active files will each have a one byte
internal name referred to as the "file handle". File
handles are allocated by OSFIND, cancelled by
OSSHUT and passed as arguments to all other
routines. Valid file handles are all non-zero, The use of
zero as a file handle cause some of the routines to
perform special functions.

An open file has various status information associated
with it, including:

The sequential pointer P (called PTR by BASIC)

The file extent E (called EXT by BASIC)

The file region R

The file is viewed as a row of bytes labelled 0, 1, 2, 3
etc. The sequential pointer holds the number of the
next byte to be read or updated. As OSBGET and
OSBPUT access successive bytes of the file, they
increment P, which is a three byte value. The file
extent E is another three byte value which holds the
number of characters stored in the file. E=0 indicates
an empty file and when E=P an attempt to go further
onwards will return an end of file marker and subse-
quently cause a 'BRK'. The region R is used when
output is sent to a file.

23

When a new file is created a region of disc is set
aside for it. The new file will have an extent of 0, and
R will show the size of the disc block allocated. As
bytes are written to the file, E is incremented and
when E=R the file is full and no further bytes may be
added. R is always a multiple of the disc sector size (
256 bytes) and cannot subsequently be changed (files
cannot be extended). When a file is SHUT any
unused sectors are released. It will always be true
that:

0 <= P <= E <= R

and R is a multiple of 256.

7.3.2 OSRDAR and OSSTAR

OSRDAR and OSSTAR provide a means of interro-
gating P, E and R, and updating P. The ability to
change P gives the user random access and the
update capability for sequential files. If P is set
beyond the extent of a file using OSSTAR, the space
in the file from its old length to its new will be filled
with bytes of value FF.

7.3.3 OSBPUT

OSBPUT writes bytes to a file. On entry, the A
Register holds the byte to be written and the Y
Register holds the file handle. If P=R, the file is full,
and OSBPUT closes the file and executes a 'BRK'.
Otherwise byte P of the file is updated and then, if
P=E, both E and P are incremented (or P only is
incremented). In the normal case when bytes are
being added to the end of the file P=E.

7.3.4 OSBGET

OSBGET reads bytes from a file. On entry, the Y
Register will hold the file handle. If P=E there are no
more bytes in the file, so OSBGET sets the carry flag
and returns the value FF. A second attempt to read at
end of file causes a 'BRK'. Otherwise, OSBGET puts
byte P of the file into the A Register, increments P and
returns with the carry flag clear.

7.3.5 OSFIND

OSFIND opens files for input or output. Before calling
OSFIND, it is necessary to provide a block of store
containing the file name terminated by 0D, (Carriage
Return). Two bytes in Zero Page point to this block,
and the X Register contains the address of the
pointer. If the carry flag is set the named file must
already exist and E and R will be set to its actual size.
If the file is not present on disc then OSFIND will
return 0, this gives the user a way to detect whether a
file exists or not.

If the carry flag is clear and the named file already
exists, the old file region will be used, but with E set to
zero initially. The result of this will be that the data in
the old file cannot be accessed, but the region of the
new file will he the same as the old, i.e. the old file is
effectively deleted. If the old file was protected,
OSFIND will fail. If no old file existed a new file is
created with E set to zero and R given the default
value of 4096 bytes. If there is not enough room on
disc, then a 'BRK' is taken. If the user needs to control
the size allowed for files (for instance requiring more
than the default size), then the files should be pre-
allocated by using SAVE so that OSFIND does not
create them. Note that file names in OSFIND are
effectively modified by the current drive and qualifier.

7.4 FILE BUFFERS AND CONTROL BLOCKS

The region of store from 2200 to 27FF is used for file
buffers and control blocks. To reduce chance of disc
corruption, the software maintains checksums on this
memory, causing a 'BRK' if a check fails. In this event
the safest thing to do is start from hardware reset, but
in most cases it should he safe to shut files first.

24

